Math 245C Lecture 11 Notes

Daniel Raban

April 24, 2019

1 Properties of Convolution and Young's Inequality

1.1 Properties of convolution

Proposition 1.1. The convolution satisfies the following properties:

- 1. f * g = g * f
- 2. (f * g) * h = f * (g * h)
- 3. If $z \in \mathbb{R}^n$, $\tau_x(f * g) = (\tau_z f) * g = f * (\tau_z g)$.
- 4. If $A = \{x + y : x \in \operatorname{supp}(f), y \in \operatorname{supp}(g)\}$, then $\operatorname{supp}(f * g) \subseteq \overline{A}$.

Proof. Let $f, g : \mathbb{R}^n \to \mathbb{R}$.

- 1. We have already proved this.
- 2. Let $x \in \mathbb{R}^n$. We have

$$(f * g) * h(x) = \int_{\mathbb{R}^n} (f * g)(x - y)h(y) \, dy$$
$$= \int_{\mathbb{R}^n \times \mathbb{R}^n} f(x - y - z)g(z)h(y) \, dy \, dz$$

But

$$f * (g * h)(x) = \int_{\mathbb{R}}^{n} f(x - u)g * h(u) du = \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f(x - u)g(u - v)h(v).$$

So set u = y and u - v = z. Then

$$x - y - z = x - v - (u - v) = x - u,$$

so the two expressions are equal.

3. We have

$$\tau_z(f*g)(z) = f*g(x-z)$$

=
$$\int_{\mathbb{R}^n} f(x-z-y)g(y) \, dy$$

=
$$\int_{\mathbb{R}^n} (\tau_z f)(x-y)g(y) \, dy$$

=
$$(\tau_z f)*g(x).$$

Since f * g = g * f, we conclude that

$$\tau_z(f*g) = \tau_z(g*f) = (\tau_z g)*f = f*(\tau_z g).$$

4. Assume $x \notin A$. Observe that

$$f(x-y)g(y) = \begin{cases} 0 & y \notin \operatorname{supp}(g) \\ 0 & y \notin \operatorname{supp}(g). \end{cases}$$

 $\frac{\text{Hence, } f \ast g(x) = 0. \text{ Then } A^c \subseteq \{f \ast g = 0\}, \text{ so } \{f \ast g \neq 0\} \subseteq A, \text{ which makes } \frac{\{f \ast g \neq 0\}}{\{f \ast g \neq 0\}} \subseteq \overline{A}.$

1.2 Young's inequality

Our goal is that if $1 \le p, q, r < \infty$ and $r^{-1} + 1 = p^{-1} + q^{-1}$, then

 $||f * g||_r \le ||f||_p ||g||_q.$

It is important to note here that this bound is independent of the dimension.

Theorem 1.1 (Young's inequality). Let $1 \le q \le \infty$, let $f \in L^1$, and let $g \in L^q$. For a.e. $x \in \mathbb{R}^n$, f * g(x) exists, and

$$||f * g||_q \le ||f||_1 ||g||_q.$$

Proof. Assume $q < \infty$.

$$\|f * g\|_q = \left(\int_{\mathbb{R}^n} |f * g(x)|^q \, dx\right)^{1/q}$$
$$= \left(\int_{\mathbb{R}^n} \left|\int_{\mathbb{R}^n} f(y)g(x-y) \, dy\right|^q \, dx\right)^{1/q}$$

Use Minkowski's inequality.

$$\leq \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(y)g(x-y)|^q \, dx \right)^{1/q} \, dy$$

$$= \int_{\mathbb{R}^n} |f(y)| \left(\int_{\mathbb{R}^n} |g(x-y)|^q \, dx \right)^{1/q} \, dy$$

Set z = x - y.

$$= \int_{\mathbb{R}^n} |f(y)| \|g\|_q \, dy = \|f\|_1 \|g\|_q.$$

If $q = \infty$, the proof is simpler.

Definition 1.1. $C_0(\mathbb{R}^n) = \{f \in C(\mathbb{R}^n) : \{|f| \ge \varepsilon\} \text{ is compact } \forall \varepsilon > 0\}$ is the set of functions that **vanish at** ∞ .

Remark 1.1. As a subspace of L^{∞} , $\overline{C_c(\mathbb{R}^n)} = C_0(\mathbb{R}^n)$.

Theorem 1.2. Let $1 \le p, q, \le \infty$ be conjugate exponents. Let $f \in L^p$ and $g \in L^q$. Then

1. f * g(x) exists for each $x \in \mathbb{R}^n$, and

$$|f * g| \le ||f||_p ||g||_q$$

2. f * g is uniformly continuous.

3. If $1 , then <math>f * g \in C_0(\mathbb{R}^n)$.

Proof. For $p \neq \infty$, by Hölder's inequality,

$$|f * g(x)| = \left| \int_{\mathbb{R}^n} f(x - y)g(y) \, dy \right| \le \left(\int_{\mathbb{R}^n} |f(x - y)|^p \, dy \right)^{1/p} \|g\|_q = \|f\|_p \|g\|_q.$$

If $p = \infty$, the proof is easier.

To prove the second statement, it suffices to show that $\lim_{y\to 0} \|\tau_y(f*g) - f*g\|_u = 0$. \Box

We will finish the proof next time.